FOLSOM CORDOVA UNIFIED SCHOOL DISTRICT

SAT Prep / College Exploration

Date: February 2015
Proposed Grade Level(s): 11
Category: Elective
Grading: A-F
Course Length: 1 year
Prerequisites: 2.5 GPA or instructor approval
Number of Credits: 5 per semester

COURSE DESCRIPTION:

The SAT Prep / College Exploration course is an elective course designed for students who intend on attending a 4 year college or university. The course will help students develop and experience targeted subject content and skills review to prepare them for the SAT exam. In addition to preparing students for the SAT exam, the course will guide students through choices they must make about pursuing higher education, deciding on a career, and determining what schools are right for them. Students will also explore the college application process and ways to pay for college.

GENERAL GOALS/PURPOSES:

This course is designed for those students who are planning to take the SAT exam. It gives students the skills they need to approach the SAT with confidence. This one-semester elective targets critical reading, writing, mathematics, and the fundamentals of writing the essay component of the SAT exam. In addition, students will be exposed to test construction and scoring, test-taking strategies, and higher order problem solving and thinking skills they need to improve their performance on the SAT. Students will learn test taking strategies that they can use on test-day. Students will leave this course with skills that will enhance their future studies. There will be special emphasis placed on writing personal statements for college applications. Students will focus on specific writing genres listed under the State Content Standards in the Reading/Language Arts Framework for California Public Schools.

Teachers of SAT Prep will scaffold instruction to meet the needs of all students, provide ongoing test practice that helps bridge the gap between content knowledge and performance, diagnose student’s needs, and monitor progress. Students will leave the course understanding what content knowledge the SAT tests and how to best approach each section in order to achieve their potential.

CCSS READING COMPONENT:

Students will read a wide variety of pieces during the unit that focuses on critical reading skills. As the SAT draws its readings from both informational and fictional works, students will need to become familiar with the conventions of a number of genres and writing styles. Additionally, students will read and evaluate their own essays critically.

CCSS WRITING COMPONENT:

Students will learn to respond to an on-demand prompt, develop a thesis or controlling idea, develop body paragraphs to provide support for the thesis with well developed assertions and evidence in an argument-centered manner. They will also focus on the narrative/autobiographical writing genre to prepare them for college admissions personal statements.

CCSS SPEAKING and LISTENING COMPONENT:

All readings and lessons will be discussed in class to stimulate thought for writing and test-taking strategies. Because class discussion allows for more thoughtful, organized responses in writing, students will be expected

Revised 02/25/15
to engage at a formal and informal level. Students will discuss test-taking strategies as a way to learn from their peers - including ways to save themselves time and increase test performance.

Students will be expected to:
- Actively participate in class discussions of a given work;
- Read aloud from readings and their own work;
- Present information gained in research;
- Use technology to enhance final products.

DETAILED UNITS OF INSTRUCTION:

- **Writing:** During the writing unit, students will focus on understanding the demands of an SAT-style essay, the kinds of questions asked, and how to argue their point of view effectively, using rhetorical strategies as well as strong evidence. The unit will also focus on common grammar and writing errors—such as passive voice, misplaced modifiers, pronoun agreement problems, subject/verb agreement, etc.—and how to correct them.

- **Critical Reading:** The critical reading unit will focus on understanding both short and long passages, focusing on students’ understanding of vocabulary in context, reasoning skills, and reading skills. Students will practice using reading strategies on sample SAT problems as well as timed exams.

- **Mathematics:** During the mathematics unit, students will learn test taking strategies for the math portion of the SAT. Students will use and expand upon their mathematics content knowledge to solve problems. Students will practice using their math strategies on sample SAT problems as well as timed exams.

- **SAT/ACT Basics:** During the SAT/ACT basics unit, students will explore the similarities and differences of the two exams. Student will be exposed to ACT timed tests. This unit will also focus on basic testing information, such as how to prepare a SAT preparation timeline and what to do the night before the exam.

- **College Exploration:** During the college exploration unit, students will explore college and career options. Guest speakers from the local community as well as college representatives will be incorporated throughout the unit. Students will begin writing their personal statements, preparing their college application materials, and explore ways to pay for college.

TEXTBOOKS AND RESOURCE MATERIALS:

The Official SAT Study Guide, CollegeBoard
SAT Premier, Kaplan
Kaplan Foundations SAT, Kaplan Advantage, Kaplan Aspire

COMMON CORE STATE STANDARDS ADDRESSED:

ELA
Through the study of SAT reading and writing strategies, students will strengthen their ability to read critically and write rhetorically. The SAT Critical Reading and Writing section focuses on a number of domains: 1)
Passage Based Reading (both short and long), 2) Sentence Completion, 3) Essay composition, 4) Sentence Errors, and 5) Improving Style. The CCSS standards that are emphasized in the course are outlined below:

- **Standards for Reading:**
 - Cite strong and thorough evidence to support analysis of what the text says explicitly as well as inferences drawn from the text (CCSS R.1).
 - Analyze the impact of the author’s choices regarding how to develop and relate elements of a piece (CCSS R.3).
 - Determine the meaning of words and phrases as they are used in the text, including figurative, connotative, and technical meanings (CCSS R.4).
 - Analyze how an author’s choices concerning how to structure specific parts of a text contribute to its overall structure and meaning (CCSS R.5).

- **Standards for Language:**
 - Demonstrate command of the conventions of standard English grammar and usage when writing or speaking (CCSS L1.A-D).
 - Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing (CCSS L2.A-C).

- **Standards for Writing:**
 - Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence. (CCSS W1.A-E).
 - Produce clear and coherent writing in which the development, organization, and style are appropriate to the task, purpose, and audience (CCSS W4).
 - Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach (CCSS W5).
 - Draw evidence from literary or informational texts to support analysis, reflection, and research (CCSS W9).

Mathematics

Through the study of SAT math strategies and problem solving, students will strengthen their mathematics understanding while learning to persevere in solving mathematics problems. The SAT Mathematics section focuses on four categories: 1) Numbers and Operations, 2) Algebra and Functions, 3) Geometry and Measurement, and 4) Data Analysis, Statistics, and Probability. Several Common Core Standards as well as the eight standards for mathematical practices are addressed throughout the four SAT categories. The standards that are emphasized during the course are outlined below.

- **Standards for Mathematical Practice:**
 1. Make sense of problems and persevere in solving them.
 2. Reason abstractly and quantitatively.
 3. Construct viable arguments and critique the reasoning of others.
 4. Model with mathematics.
 5. Use appropriate tools strategically.
 6. Attend to precision.
 7. Look for and make use of structure.
 8. Look for and express regularity in repeated reasoning.

- **Number and Quantity:**
 - Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (N-Q.1)
 - Define appropriate quantities for the purpose of descriptive modeling. (N-Q.2)
 - Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (N-Q.3)

- **Algebra:**
Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. (A-CED. 1)

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (A-CED. 2)

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. (A-CED. 3)

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law $V = IR$ to highlight resistance R. (A-CED. 4)

Functions:

Write a function that describes a relationship between two quantities. (F-BF. 1)

- Determine an explicit expression, a recursive process, or steps for calculation from a context.
- Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
- Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.

Geometry:

Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. (G-CO. 1)

Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (G-SRT. 5)

Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90° and 45°, 45°, 90°). (G-SRT. 8.1)

Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. (G-C. 2)

Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. (G-GMD. 3)

Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-world and mathematical problems. (G-GMD. 6)

Statistics and Probability:

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. (S-ID. 2)

Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. (S-ID. 7)

Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”). (S-CP. 1)

Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. (S-CP. 2)

Use permutations and combinations to compute probabilities of compound events and solve problems. (S-CP. 9)
DISTRICT ESLRs TO BE ADDRESSED:

When students exit a secondary mathematics course, they will be:

- **Self-directed Learners** who write independently, gaining confidence in their abilities to think on their own and synthesize information from a variety of sources, realizing that independent learning is a lifelong tool for success in the classroom and beyond.

- **Efficient Communicators** who are able to relate polished formal and extemporaneous presentations with appropriate public speaking techniques and strategies.

- **Quality Producers** who take pride in all assignments and realize the value of creating an error-free product that is original in substance.

- **Constructive Thinkers** who reflect on their reading and writing to enhance the outcomes of their work. Students engage in higher level thinking activities, evaluation and peer editing of essays, and synthesis of a number of resources into a final written product.

- **Collaborative Workers** who are capable of working in both large and small groups in order to produce well-organized, thoughtful products. Group work will be a reflection of the effort contributed by each member of the group.

- **Responsible Citizens** who are prepared to contribute to our democracy in positive ways. From their reading and writing, students gain an understanding of the responsibility, honor, and integrity that is essential to become a functioning member of our society.