Technology Plan

Folsom Cordova Unified School District

July 1, 2016 - June 30, 2021
Table of Contents

1. Overview
2. Curriculum
 a. Technology Access
 b. Technology Use
 c. Using Technology to Improve Teaching and Learning by Supporting District Curricular Goals
 d. Internet Safety and the Appropriate and Ethical Use of Technology
3. Professional Development
 a. Summary of Teachers’ Skills and Needs
4. Infrastructure, Hardware, Technical Support, and Software
 a. Hardware and Software
 b. Software/Storage
 c. Classroom Infrastructure
 d. Network Infrastructure
5. Funding and Budget
6. Monitoring and Evaluation
 a. Evaluation of Overall progress

Appendix A - Internal Technology Survey TEACHERS
1. Overview

The Folsom Cordova Unified School District (FCUSD) is a vital district of approximately 20,000 students, located in Sacramento County, California, with twenty elementary schools, four middle schools, three comprehensive high schools, three alternative high schools, a charter school, and an adult education program, as well as a wealth of other services and programs. The District has a rich history of over 80 years of serving students and the community.

FCUSD is located approximately 20 miles east of Sacramento, California and encompasses 96 square miles.

Folsom’s population is approximately 72,000, while Rancho Cordova’s population is slightly lower at about 64,000. Both communities share characteristics of small towns with active parent groups, service organizations, and city councils. Business partnerships include national corporations and retailers such as Intel, Aerojet Rocketdyne, Kaiser Permanente, Costco, and Sam’s Club, as well as numerous local and regional businesses.

FCUSD has a broad, diverse population of students from a wide variety of cultures and socioeconomic backgrounds. According to the CalPADS enrollment numbers from Fall 2015, FCUSD had 11.66% of its students identified as English Language Learners, with 34.46% socio-economically disadvantaged. Fall 2015 CalPADS data is outlined in the tables that follow. In addition to the student population outlined below, the District is servicing over 640 PreK students in Transitional Kindergarten and Special Education Preschool programs for the 2015-2016 school year.

Enrollment Summary
Enrollment Fall 2015
CALPADS

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Total In Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1,585</td>
</tr>
<tr>
<td>1</td>
<td>1,438</td>
</tr>
<tr>
<td>2</td>
<td>1,447</td>
</tr>
<tr>
<td>3</td>
<td>1,529</td>
</tr>
<tr>
<td>4</td>
<td>1,576</td>
</tr>
<tr>
<td>5</td>
<td>1,541</td>
</tr>
<tr>
<td>6</td>
<td>1,578</td>
</tr>
<tr>
<td>7</td>
<td>1,577</td>
</tr>
<tr>
<td>8</td>
<td>1,521</td>
</tr>
<tr>
<td>9</td>
<td>1,569</td>
</tr>
<tr>
<td>10</td>
<td>1,546</td>
</tr>
<tr>
<td>11</td>
<td>1,440</td>
</tr>
<tr>
<td>12</td>
<td>1,486</td>
</tr>
</tbody>
</table>

Ethnicity Fall 2015
CALPADS

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Enrollment</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black/African American</td>
<td>1195</td>
<td>6.02%</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>104</td>
<td>0.52%</td>
</tr>
<tr>
<td>Asian</td>
<td>3079</td>
<td>15.5%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3866</td>
<td>19.46%</td>
</tr>
<tr>
<td>Native Hawaiian/Other Pacific Islander</td>
<td>137</td>
<td>0.69%</td>
</tr>
<tr>
<td>White</td>
<td>10400</td>
<td>52.35%</td>
</tr>
<tr>
<td>Multiple</td>
<td>1223</td>
<td>6.16%</td>
</tr>
</tbody>
</table>
Purpose of the Technology Plan

As a District we continually work to better provide our students with the necessary 21st century skills and experiences that will lay a solid foundation for their futures.

The components necessary to provide our students with this foundation encompass not only our curriculum, professional development, learning environments and resources, but also the support provided to staff and students and the commitment to continually evaluate and refine our path.

The District Technology Plan provides us the structure to map out this path and share a clear vision with both District staff and the larger community. Integral to this vision is the ability to provide staff and students with updated resources, access that matches the needs of the curriculum, and an environment that can support innovation.

Our 21st century learners are asked to access the curriculum, create, collaborate, and demonstrate learning in unprecedented ways. More than ever before, it is vital for the District to have a plan supporting accessibility to necessary devices, appropriate software and cloud resources, audio/visual presentation systems and the critical interconnectivity provided by a robust underlying wired and wireless network infrastructure.
2. Curriculum

2a. Technology Access

FCUSD places a high priority on improving teachers’ and students’ access to current technology tools.

A dramatic shift is sweeping through our schools in the integration of technology in the classroom. FCUSD schools are focusing on developing 21st century skills for their students, which include collaboration, critical thinking and digital literacy.

In addition to the Common Core State Standards (CCSS) and advancing the 21st century classroom, the District has been facilitating online assessment systems such as the California Assessment of Student Performance and Progress (CAASPP) as well as providing a Bring Your Own Device (BYOD) Wireless Network, which allows staff and students to bring personal devices that aid and contribute to teaching and learning.

As the District moves toward this technology-infused learning environment, we must increasingly put technology into the hands of students and must trust staff and students with more progressive technology use. The past three years have seen a dramatic increase in the availability of technology resources in the district as well as a significant shift in the access model implemented at our sites.

The need for this shift in technology acquisition and student access becomes clear when framed by the following guiding questions:

- How can technology be used within the disciplines for the purpose of supporting achievement of the standards?
- What technology is necessary to support each curricular adoption?
- How should technology be purchased and distributed to ensure that all students have consistent access to digital curriculum, tools and resources?

Past practice of outfitting physical rooms as computer labs has given way to the implementation of mobile devices, thus giving sites not only more access, but a more flexible model to better utilize the resources.

Elementary computer labs have all but disappeared and have been replaced with mobile devices. These sites have seen their levels of access jump from previously one shared room to currently a 3-1 student to device ratio. The goal at elementary sites is to achieve, support and maintain a 2-1 student to device ratio in all classes.

All of our secondary sites, both middle and high schools, will also be at a 3-1 student to device ratio by Fall 2016. Computer labs are still required at this level to support our programs that require access to more sophisticated software, but where those spaces used to be the primary technology access on campus, they are now part of a larger picture of resources supporting
technology access and integration in all curricular areas. Our goal at the secondary sites is to achieve, support and maintain a 1-1 student to device ratio in all classes.

Parallel to the new model of mobile access for students, the model of teacher access to technology is also shifting. Past practice was to provide teachers with a desktop PC connected into the wired network, but as we offer more flexibility in student access it is vital that we mirror that for our teachers.

Guiding questions driving resources for teachers are the following:

- What technology is needed to support teachers’ operational needs?
- What technology is needed to support curriculum that is implemented with fidelity?
- What technology is needed to support effective instruction?

After years of budget and funding challenges the District was able to update a significant number of staff computers during the 2015-2016 school year from one-time funding sources. This provided the opportunity to begin to implement a new vision for instructional delivery.

This new vision for instructional resources includes the following:

- A laptop that is capable of supporting all operational, instructional, and curricular needs
- A projection or display device appropriate in size for each specific classroom environment
- Wireless access for all classrooms with bandwidth to support all wireless needs
- An input device such as an iPad or document camera
- Access to a learning management system (such as Google Classroom) and instructional resources (such as programs that are part of curricular adoptions and TurnitIn)
- A cloud based storage option for students and teachers
Resource Overview

<table>
<thead>
<tr>
<th>Audio/Visual Presentation Solutions</th>
<th>Mobile Devices</th>
<th>Document Cameras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nine of the elementary sites in Rancho Cordova have interactive whiteboards in their classrooms. Our tenth site, Riverview STEM Academy is outfitted with the new classroom model of a TV paired with a teacher iPad. This new model preserves the presentation options while providing the teacher with increased mobility. The ten elementary sites in Folsom have varying combinations of AV infrastructure ranging from interactive whiteboards to mounted projectors or AV on carts. Most classrooms have access to some form of AV presentation option.</td>
<td>Each of our elementary sites will begin the 2016-2017 school year at a 3-1 or better student to device ratio. Devices are predominantly Chromebooks with smaller numbers of iPads being utilized at various sites.</td>
<td>While some devices were added to sites to provide functionality needed for parts of the Illuminate Data System implementation, there has not been targeted funding dedicated to purchasing this equipment. Sites have used a variety of funding sources and donation avenues to add these devices into many classrooms.</td>
</tr>
<tr>
<td>Middle Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The two middle school sites in Rancho Cordova have interactive whiteboards in all of their classrooms. The two Folsom sites have varying combinations of AV infrastructure ranging from interactive whiteboards to mounted projectors or AV on carts. Most classrooms have access to some form of AV presentation option.</td>
<td>Each of our middle schools will begin the 2016-2017 school year at a 3-1 or better student to device ratio. Devices are predominantly Chromebooks with smaller numbers of iPads being utilized at various sites. Project Lead the Way classes at each site also utilizes Android tablets as part of their curriculum.</td>
<td>While some devices were added to sites to provide functionality needed for parts of the Illuminate Data System implementation, there has not been targeted funding dedicated to purchasing this equipment. Sites have used a variety of funding sources and donation avenues to add these devices into many classrooms.</td>
</tr>
<tr>
<td>High Schools</td>
<td>Our comprehensive high school in Rancho Cordova along with the continuation and alternative secondary sites located there, have interactive whiteboards in each of their classrooms. The two Folsom high school sites and the continuation school have varying combinations of AV infrastructure ranging from interactive whiteboards to mounted projectors or AV on carts. Most classrooms have access to some form of AV presentation option.</td>
<td>Each of our secondary schools will begin the 2016-2017 school year at a 3-1 or better student to device ratio. Devices are predominantly Chromebooks with smaller numbers of iPads being utilized at various sites.</td>
</tr>
</tbody>
</table>

2b. Technology Use

Teacher use of technology at all levels has diversified significantly in recent years. A number of factors have caused this shift. First, students have increased access to technology both at home and in our communities. Second, media and electronic content has become available across a wide variety of platforms and delivery modes, and content has become cheaper or free in many cases. The proliferation of smart phones and other mobile devices has made services such as Google, YouTube, Netflix, and countless other media sources available on demand to a large percentage of our students. Our students and our teachers no longer “connect” occasionally to find information--they live connected.

This constant connectivity allows students and families to retrieve information nearly instantly, has reduced the need to commit large amounts of information to memory, and has conditioned community members to expect near immediate access to information.

Similarly, our teachers have come to expect constant connectivity. Teachers have begun to access and integrate digital academic content in a fluid manner. Networked computers stay plugged into projectors or televisions and are used frequently for research, to locate visual aids, to conduct formative and interactive assessment, and for many other purposes.
Until recently, technology and digital content has been used to supplement content, support instructional delivery, differentiate instruction, and to support collaboration. With the implementation of Common Core and Next Generation Science Standards and associated curriculum adoptions, technology is now a core component of our curriculum. The need for educational technology continues to evolve rapidly and unpredictably. Therefore, academic technology needs to be flexible.

2c. Using Technology to Improve Teaching and Learning by Supporting District Curricular Goals

The components of this technology plan provide for the resources and support imperative to meeting our District goals:

- All students will receive high quality classroom instruction and have access to curriculum which promotes college and career readiness
- Increase parent and community engagement
- Student progress and educational outcomes will be monitored for success
- Increase student engagement and provide a safe, healthy, and positive learning environment

They make possible the implementation of the tools and supporting systems which provide the structure for success.

Tools including:

- Common Core aligned and NGSS aligned curriculum (Envision, StudySync, iLit, etc.)
- Access to data (Illuminate)
- District wide diagnostic testing (i-Ready)
- Programs to support instruction and learning (Lexia, Accelerated Reader, Google Apps for Education, Read Naturally, etc.)
- Communication Systems (District and school websites, Blackboard/ConnectEd, Mobile Applications, PowerSchool Parent Portal, etc.)
2d. Internet Safety and the Appropriate and Ethical Use of Technology

With the ever evolving landscape of 21st century technology it is vital that students acquire the technology and information literacy skills necessary to navigate their world. Students and teachers need to be provided the opportunities and experiences to increase their skills in areas such as:

- Internet safety
- Cyber bullying
- Digital citizenship
- Copyright/fair use
- Information literacy
- Grade level appropriate technology skills

Current initiatives including the use of TurnitIn, Second Step curriculum, and presentations by Intel of their Digital Safety Curriculum as well as curriculum specific lessons and discussions need to be augmented by an updated comprehensive plan.

Over the next two years the curricular lead teachers, the Ed. Tech Lead Teacher along with site technology and curricular coaches should map out new grade level specific strategies to infuse the necessary skills into the classroom experiences.

Utilizing the guiding resources listed below to help determine what to focus on at each grade level and how to best naturally integrate skills into the curriculum.

- Common Core State Standards
- NGSS Standards
- 21st Century Skills
- ISTE Nets Standards for Students and Teachers
- Curricular Adoptions
- Curriculum such as Common Sense Media
3. Professional Development

3a. Summary of Teachers' Skills and Needs

In order to support student achievement, teachers must have the opportunity to develop their skills at using academic technology. Professional development needs at all levels are diverse as each grade level, content area, and/or specific course can have unique needs. Additionally, the level of technological proficiency among teachers is exceptionally diverse. Consequently, technology-focused professional development models must be diverse and flexible. While the traditional model of in-person training can provide good opportunities for introducing skills, conversation and collaboration, it is rarely frequent enough to create a sustained impact. It would benefit the District and the teachers to also integrate a more “on-demand” delivery model of professional development. Teachers struggling with the use of technology to support their students must have access to on-demand training and support. This may be accomplished by aggregating third party and District-produced training and guides.

The development of Professional Learning Communities supports a differentiated professional learning model. PLCs, through collaboration with supporting administrators, are capable of identifying their professional development needs.

Overall teacher needs for professional development encompass three main areas:

- Operational technology: PowerSchool, PowerTeacher, Outlook, Illuminate, I-Ready, TurnitIn, Google Drive, and more
- Instructional technology: iPads as input devices, web-based formative assessment, Google Classroom, and many more
- Curriculum specific technology

In order to develop a comprehensive snapshot of technology skills and professional development needs, teachers were asked to complete a survey in the spring of 2016. A sample of the results of the survey are illustrated in the tables following this section with more information provided in the Appendix.

With over 400 teachers responding, staff identified their top three areas of requested training to be Google Classroom, Google Drive and Illuminate.

In reference to the training model most preferred, the majority of teachers currently prefer training to take place on site or during full day release days. However, almost half indicated that online instruction would be of value.

Working with that information, curricular lead teachers, the Ed Tech lead teacher, and site technology and curricular coaches should continue to offer as much in person professional development as possible, while we work to organize and/or create a suite of online resources that will provide those needed “on demand” “just in time” opportunities.
Hardware and Software:

Access to technology resources on our campuses has changed dramatically in the past few years. We have shifted from a model of shared computer labs and limited access, to an environment of integrated access within the classroom, with an ever-increasing number of mobile devices.

As noted in Chapter 3, every site will have 3-1 or better student to device ratio by Fall 2016. This foundation allows the opportunity for teachers to truly integrate technology into the curriculum instead of having it be an occasional experience. New curriculum adoptions are also one of the driving forces behind the continuing need to have consistent access to technology resources. Over the next few years the goal is to provide a 2-1 device to ratio at our elementary sites and 1-1 access at our secondary schools. Coupled with achieving these ratios is a plan to support and sustain the technology in future years with a comprehensive replacement strategy.

In February 2016, the District replaced approximately 600 “out-of-support” teacher desktops with new Windows-based laptops. Each year, this plan calls for the replacement of remaining teacher desktop computers as they reach an “out-of support” status, and as funding becomes available, with the ultimate goal of creating an entire fleet of mobile technology tools for the District teaching staff.

In coming years and as cloud and internet delivered computing become even more robust, ETIS will examine new and more cost effective technologies and devices, such as Chromebooks, to replace more traditional and costly laptops as primary teacher devices.

Software/Storage:

Historically, the District standard has been to provide the productivity software (Microsoft Office) on every District computer along with individual and shared network storage as a means to store and share files. However, the increasing need for user access (both staff and student) to resources and files anytime/anywhere led the District to adopt Google Apps for Education. The addition of this tool provides much needed flexibility on the part of all users. The feasibility of shifting to Gmail as our email system within a few years is also being examined.
In addition to Google Apps, ETIS recognizes the increasing need of moving traditional education and productivity software and systems to an internet-based cloud model that allows for access from any location at any time. As many District systems are already using this method, the District recognizes that moving other existing systems to the cloud and evaluating new software and systems for cloud capability are of the utmost importance. Continuing to deliver network and software resources in this manner will allow the District to offer all resources on all types of devices, eliminating any dependence on particular operating system platforms and devices, while creating a borderless (anytime, anywhere, anyplace) accessibility model.

Classroom Infrastructure:

The physical environment of our classrooms is evolving to meet the demands of curriculum and emphasizes the role student’s play in making connections and developing ideas, solutions, and questions. Already, teachers are creating active learning environments that place students in different work groups to solve problems, create collaboratively, and discover information together.

Wireless technology and portable laptops and tablet devices bring the internet not just to every classroom, but also to every student individually in the classroom. Coupled with LED television presentation devices, projectors, microphones, and video cameras, the classroom experience is fully connected to the internet. This provides new ways of teaching and new ways of learning beyond the traditional brick and mortar classroom.

The Smart Classroom:

The District first introduced the concept of the Smart Classroom in 2006 by way of passage of the Measure N bond. In Rancho Cordova, the District committed over $8 million to expanding technology resources in every classroom in each of our schools. This included the conversion of every classroom to a “Smart Classroom.”

A “Smart Classroom” as defined in this project included:

- A ceiling mounted LCD projector
- An interactive whiteboard or tablet, or a combination thereof
- A sound system with ceiling mounted speakers (and an optional voice amplification system)
- A current PC with DVD playing capability
- An easy to operate wall switch system to control it all

This Smart Classroom is designed to enable every teacher to easily access any electronic instructional resource available, and easily utilize it for instruction. This includes all existing adopted curricular material’s technology resources, streamed video resources, interactive applications, and much more. Expansion of the interactive classrooms to Folsom sites has occurred in a small capacity (approximately 30 rooms) through various projects.

In 2014, the District evolved the Smart Classroom in the newly opened Riverview STEM Academy, utilizing an 80” LED TV presentation device, AppleTV for broadcasting wirelessly, and the use of mobile devices and tablets, to the existing design.
With its overwhelming success, the District is planning on moving the Riverview STEM Academy model to each school in the City of Folsom by way of the passage of the Measure G bond in 2014, over the next 3 years.

Going forward, the District Technology Plan calls for adding LED TV’s and other new components to modernize the existing Smart Classrooms in Rancho Cordova, as funding becomes available.

Video Broadcasting and Library Streaming: SAFARI Montage

The District has recently implemented a video delivery and broadcast system, SAFARI Montage, which utilizes the high speed data network for delivering digital video content to all classroom devices.

SAFARI Montage servers come preloaded with educational video titles tied to the curriculum from the industry's leading video publishers, which include Schlessinger Media, PBS, The History Channel, National Geographic, Scholastic, Disney Education, BBC and more. SAFARI Montage is now the only commercial digital distributor of PBS’ library of full-length programs to schools nationwide. In addition, school districts can easily upload and manage their own digital content, and disseminate it to all users throughout the school or District. SAFARI Montage IPTV is saving the District money by eliminating the need to install and update existing coaxial cabling to utilize learning resources achieved through the use of cable television.

In 2017, the District will be deploying a new feature in the system that will allow schools and classrooms to broadcast live closed-captioned video feeds (i.e., announcements, school news shows, etc.) as part of the existing suite of services.

Video Conferencing

Video conferencing is being used globally in primary and secondary education to connect classrooms to each other and to interesting places around the world. This is being described as the great equalizer in education where students and teachers can take a "virtual" field trip and learn about abstract concepts from experts in an industry.

Video conferencing has let our students ask questions directly to the experts, making the answers and information more engaging. For example, students from the Riverview STEM Academy were able to learn about the work being done with Aerojet in 2016 over live video conferencing.

The District Technology Plan calls for continued development and deployment of the use of video conferencing equipment, as it becomes a greater component of the curriculum being developed in the modern 21st century FCUSD classroom.

The District is currently using tools such as Cisco Telepresence, Cisco WebEx, Apple Facetime and Microsoft’s Skype and is evaluating use cases and standards, measuring ease of use and cost, in relation to the product.
Network Infrastructure:

Network Infrastructure Goals

FCUSD, not unlike all K12 districts today, has specific operational requirements that continuously demand network resources of our current infrastructure. Whether it is for video, voice, or mission-critical applications, the network must be carefully designed, implemented, and maintained to ensure the stable and continuous movement of data traffic to all of our educational and business devices.

At present, the District Data Center network has a 1 GB pathway which is insufficient to meet our growing technological demands. Under the District Wide Network Upgrade, a 10 GB network infrastructure will be implemented, enabling consistent and adequate high speed traffic from all school sites to the District Data Center and out to the internet, allowing for future growth of the District’s technology capacity.

In addition to this upgrade, it is proposed that the District replace existing and often failing traditional phone systems, with voice over IP phone systems, currently implemented at the District Education Service Center as well as nine other school facilities. This will allow all District voice communications to be aligned into one platform, providing seamless communication and student safety.

In the absence of this upgrade, network data traffic will remain sluggish in certain school locations; hinder classroom technology usage and further degrading performance as additional devices are added to the network.

Plan:

The District’s Education Technology Information Systems (ETIS) team has been engaged with Cisco for the past year, creating a network design that implements and utilizes a 10 GB network connecting to the Sacramento County Office of Education and the K-12 High-Speed Internet/Network.

Included in this design is security technology to protect student and staff information, maintain 10 GB network pathways for traffic from each school site, and network technology to support an ever expanding number of devices that support the District learning initiatives and BYOD wireless demands.

Also added in to the project is converting all school sites, that have not already done so, to voice over IP telephone systems, in line with integrated communications leveraging the District’s Data Network.

The entire project of upgrading the District Data Center and all remaining school sites will cost approximately $8 million.

Currently, ETIS is applying for Federal E-Rate discounts and funding to accommodate this project, which will pay for up to 60% of all equipment that the District is E-Rate eligible. Under
E-Rate eligibility formulas, we expect that the District will receive just over $2 million in Federal Funding toward the cost of Cisco switches, routers and other network equipment at all school facilities. E-Rate is a $2.4 billion annual government subsidy program that was founded in 1996 with the goal of upgrading America’s schools for better internet access.

After E-Rate funding is applied, the Network Upgrade Project will cost the District approximately $6 million. This will be covered from a combination of one-time funds, Bond funds, and deferred maintenance.

Completion of the network upgrade of the network to a modern 21st century network will accommodate our ever-growing teaching and learning technology needs.

5. Funding and Budget

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacing Staff PC’s</td>
<td>$280,000</td>
<td>$165,000</td>
<td>$165,000</td>
</tr>
<tr>
<td>Replacing Student PC’s</td>
<td>$300,000</td>
<td>$230,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Mobile Devices</td>
<td>$860,000</td>
<td>$1,250,000 Move toward 1-1 at Secondary Begin Refresh of oldest devices</td>
<td>$1,250,000 Move toward 1-1 at Sec Begin Refresh of oldest devices</td>
</tr>
<tr>
<td>Network Upgrade</td>
<td>$6,000,000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ETIS Annual Budget</td>
<td>$1,300,000</td>
<td>$1,300,000</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>Education Technology Annual Budget</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$190,000</td>
<td>$190,000</td>
<td>$190,000</td>
</tr>
</tbody>
</table>
6. Monitoring and Evaluation

The District will utilize established surveys and data systems to provide information to assist in the monitoring and evaluation of this plan. Data collected from surveys, our support portal, assessment systems, and other electronic systems will be used to guide plan modifications, assist in monitoring our progress, and show the effective impact of this plan on teaching and learning.

Evaluating the plan’s overall progress and impact on teaching and learning:

Evolution of Learning Environment Technology Needs

There is a need to create a recurring and regular feedback loop to support the need for operational technology. This mechanism should include teacher-led forums to collect feedback from instructors regarding the need for operational technology and associated professional development.

In regards to all future curriculum adoptions, define and implement a process where lead teachers, division leads, administrators and designees collaborate to determine what technology is needed to support the adopted curriculum with fidelity. This process should be completed as part of the adoption process and prior to the final decision to adopt. This team should complete a standard report to be provided to the curriculum adoption team.

Technical Support Tracking system

Data from the system will be used to evaluate the time-to-response for technical support requests and to track the age of technology in support of the planned obsolescence of equipment.

Teacher Technology Survey

Assess the staff’s current access to technology, the ways technology is used with students, the frequency of use, the types of applications used, and the staff needs for hardware, electronic learning resources, and professional development.

Professional Development Offerings

Documentation of Professional Development is possible through tracking in the Go Sign Me Up system.

Schedule for evaluating the effect of plan implementation, including a description of the process and frequency of communicating evaluation results to tech plan stakeholders:

Beginning in February of each school year, stakeholders will engage in an evaluation cycle to determine the effectiveness of this plan through the collection and analysis of data (through online feedback and surveys and review of plan activities) and make plan adjustments upon review of data.
Technology Advisory Committee plan stakeholders will receive regular updates at monthly committee meetings, the District web page, and other ad hoc meetings and presentations.

To monitor the District’s infrastructure improvements, a variety of tools are needed to collect and report progress. These tools will include bandwidth utilization charts, wireless survey studies and testing parameters to ensure that benchmarks are met. Annual reporting will be made available to the Board and community via the District website and normal communication methods.
Appendix A – FCUSD Internal Teacher Technology Survey Spring 2016

Grade Level

- Middle School: 78 (19.5%)
- High School: 107 (26.8%)
- Elementary: 204 (51.1%)
- Other: 10 (2.5%)

How are you currently accessing resources & internet at school? Select all that apply.

- District Provided Workstation Computer/Laptop: 388 (97.2%)
- District Provided Tablet: 55 (14.8%)
- Personal Computer/Laptop: 81 (20.3%)
- Personal Tablet: 66 (16.5%)
- Personal Smartphone: 143 (35.8%)
- Other: 35 (8.8%)