Nomenclature 2.1

Naming Ionic Compounds
Writing Ionic Formulas
Naming Hydrates

Naming Binary Ionic Compounds
- The positive ion (cation) is written first.
 - Takes the same name as the element.
- The negative ion (anion) is written last.
 - Takes the first part of its element’s name, and -ide is added to the end.
 Ex) Bromine is changed to Bromide.

Naming Binary Ionic Compounds
- You need to know if an element forms cations with different charges.
- If it does, you need to specify the charge in Roman numerals.
- Ex) CuS is written as Copper(II) Sulfide
- Sulfide has to be S^{2-}
- Copper must be Cu^{2+} to make the compound neutral

Naming Binary Ionic Compounds
- CuBr is written as Copper (I) Bromide.
- Bromide has to be Br^{-}
- Copper must be Cu^{2+} to make the compound neutral.
- Ex) $Fe_{2}O_{3}$ is written as Iron (III) Oxide.
- Oxide has to be O^{2-}
- As there are three of them, they make up a charge of 6-
- The two iron must combine to form a charge of 6+
- Thus, each iron must carry a charge of 3+

Naming Binary Ionic Compounds

1) LiF
2) CaBr$_2$
3) K$_2$S
4) FeS
5) MgO
6) MnO
7) Co$_2$

Naming Compounds with Polyatomic Ions
- For polyatomic ions, always use the name assigned to it.
 - Do not add an additional suffix (such as -ide).
 - E.g., CO_{3}^{2-} is the carbonate ion.
 - CaCO$_3$ is calcium carbonate

Slide by slide video tutorials for all lectures can be viewed at www.hschemsolutions.com.
© 2010 High School Chem Solutions. All rights reserved.
Naming Compounds with Polyatomic Ions

- Ammonium, NH₄⁺, is the only polyatomic cation that you need to know.

e.g.) NH₄Cl is ammonium chloride

- NO₃⁻ is the nitrate ion

 NH₄NO₃ is ammonium nitrate

Hints for Learning the Names of Polyatomic Ions

- Only three polyatomic ions end in -ide.

 - CN⁻ Cyanide
 - OH⁻ Hydroxide
 - O₂²⁻ Peroxide

 Everything else ending in -ide is a monoatomic anion.

Hints for Learning the Names of Polyatomic Ions

- A system for oxoanions.

 - Hypo-____-ate (2 less oxygens than ___-ate)
 - _____-ite (1 less oxygen than ___-ate)
 - _____-ate
 - Per-____-ate (1 more oxygen then ___-ate)

 All polyatomic ions in such a series carry the same charge.

Hints for Learning the Names of Polyatomic Ions

- A system for oxoanions.

 - The example of Chlorate, ClO₅⁻

 - Hypochlorite ClO⁻ (2 less oxygens than ___-ate)
 - Chlorite ClO₂⁻ (1 less oxygen than ___-ate)
 - Chlorate ClO₃⁻
 - Perchlorate ClO₄⁻ (1 more oxygen then ___-ate)

Naming Compounds with Polyatomic Ions

1) CuCO₃
2) K₂SO₃
3) Cu(ClO)₂
4) KClO₄
5) NaClO₃
6) LiNO₂
7) LiNO₃
8) NaCH₃COO
Recognizing Ionic Compounds

- Ionic compounds contain either a metal and a non-metal, or polyatomic ions.

- If the first word in the compound is a metal or ammonium, it is an ionic compound.

Writing Ionic Formulas

- Ionic compounds are neutral.
 - Thus, all charges must sum up to zero.

- Charges come from the associated group in the periodic table, or a list.

- Parenthesis must be used when there is some multiple of a certain polyatomic ion.

Ex1) Writing Ionic Formulas

Ex1) Calcium Chloride

- Calcium is always 2+ (Group 2A periodic table)

- ide in chloride tells you it is monoatomic

- Chloride is always 1- (Group 7A periodic table)

Criss-Cross Method

\[
\begin{align*}
\text{Ca}^{2+} & \quad \text{Cl}^{-} \\
\text{CaCl}_2
\end{align*}
\]

Ex2) Writing Ionic Formulas

Ex 2) Iron (III) Sulfate

- The Iron ion carries a charge of 3+, as the Roman numeral is (III).

- You know that Sulfate is SO\(_4\)\(^{2-}\) because you memorized the table of polyatomic ions.

Criss-Cross Method

\[
\begin{align*}
\text{Fe}^{3+} & \quad \text{SO}_4^{2-} \\
\text{Fe}_2(\text{SO}_4)_3
\end{align*}
\]
Writing Ionic Formulas

1) Aluminum hydrogen sulfate
2) Iron (II) oxide
3) Iron (III) oxide
4) Strontium chromate
5) Potassium chloride
6) Ammonium Nitrate
7) Lithium Sulfite

Hydrates

- Hydrates are ionic compounds that trap water within their structures.
- Both the name and the chemical formula specify how much water is contained within the structure.

Writing Formulas for Hydrates

- Write the formula for the ionic compound using the rules you learned earlier.
- Add a dot and the correct number of waters taken from the prefix.

E.g.) Sodium sulfate decahydrate
\[\text{Na}_2\text{SO}_4 \cdot 10 \text{H}_2\text{O} \]

Writing Formulas for Hydrates

1) Barium Chloride Dihydrate

2) \(\text{FeCl}_3 \cdot 6 \text{H}_2\text{O} \)
Recognizing Binary Covalent Compounds

- They are made of two non-metals

Naming Binary Covalent Compounds

- Two words with prefixes
 - (1) mono-, (2) di-, (3) tri-, (4) tetra-, (5) penta-, (6) hexa-, (7) hepta-, (8) octa-, (9) nona-, (10) deca-
 - The first word takes the name of the element with the suitable prefix.
 - The prefix mono- is not used when there is only one atom of the first element.
 - The second word takes the name of the element with the -ide suffix and the suitable prefix.

Naming Binary Covalent Compounds

1) SiO₂
2) CO
3) CF₄
4) N₂O₅
5) XeF₆
6) N₂O₃
7) P₄O₇

Writing Molecular Formulas

1) Carbon dioxide
2) Phosphorus trichloride
3) Sulfur tetrafluoride
4) Disulfur dichloride
5) Iodine monochloride
6) Dinitrogen tetraoxide
7) Nitrogen triformide

Slide by slide video tutorials for all lectures can be viewed at www.hschemsolutions.com.
© 2010 High School Chem Solutions. All rights reserved.
Recognizing Acids
- Formulas for acids usually start with \(H \)
 - Hydrogen is always the cation.
- For organic acids, the cation is often placed at the end of the formula.
 - \(\text{CH}_3\text{COOH} \) (acetic acid)
- There are two types of acids that we will look at.
 - Acids that contain Oxygen
 - Acids that do not contain Oxygen

Naming Oxygen Containing Acids
- To name all acids you must look at the anion.
- Oxygen containing acids have polyatomic anions.
- Write the name of the polyatomic anion but change:
 - are to -ic, or
 - -ite to -ous
- and add the word acid.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Polyatomic Ion</th>
<th>Acid's Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HClO}_4)</td>
<td>Perchlorate</td>
<td>Perchloric acid</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_4)</td>
<td>Sulfate</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>(\text{CH}_3\text{COOH})</td>
<td>Acetic</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_3)</td>
<td>Sulfite</td>
<td>Sulfurous acid</td>
</tr>
<tr>
<td>(\text{HNO}_2)</td>
<td>Nitrite</td>
<td>Nitrous acid</td>
</tr>
</tbody>
</table>

Naming Non-Oxygen Containing Acids
- Non-oxygen containing acids have monoatomic or polyatomic anions.
- Write the name of the anion but change -ide to -ic
- Add the prefix hydro- and the word acid.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Ion's Name</th>
<th>Acid's Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HCN})</td>
<td>Cyanide</td>
<td>Hydrocyanic acid</td>
</tr>
<tr>
<td>(\text{HCl})</td>
<td>Chloride</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>(\text{HBr})</td>
<td>Bromide</td>
<td>Hydrobromic acid</td>
</tr>
</tbody>
</table>

Slide by slide video tutorials for all lectures can be viewed at www.hschemsolutions.com.
© 2010 High School Chem Solutions. All rights reserved.
Naming Acids

1) Nitric acid
2) Phosphoric acid
3) Hydrofluoric acid
4) Hydrophosphoric acid
5) Carbonic acid
6) Hypochlorous acid